Static - Static Analysis

Статический анализ (static analysis): Анализ артефактов разработки программного обеспечения, таких как требования или программный код, проводимый без исполнения этих программных артефактов. Статический анализ обычно выполняется при помощи вспомогательных инструментов. (ISTQB)

Статический анализ - это анализ программных артефактов, таких как программный код (или требования, дизайн), выполняемый статически, т.е. без запуска и, очевидно, методом белого ящика. Основная цель этого анализа - как можно раньше найти ошибки, независимо от того, могут ли они вызывать отказы (failures). Как и в случае с обзорами (reviews), статический анализ обнаруживает ошибки (bugs), а не отказы. Обычно статический анализ проводят до формальной проверки, даже до unit testing, путём добавления этих проверок специалистами DevOps в пайплайн проекта. Статический анализ не связан с динамическими свойствами требований, дизайна и кода, такими как покрытие тестами (test coverage). Существует множество инструментов для статического анализа, которые в основном используются разработчиками до или во время тестирования компонентов или интеграции (чаще новые и измененные классы и функции), а также дизайнерами во время моделирования программного обеспечения. Инструменты могут отображать не только структурные атрибуты, такие как глубина вложенности или число цикломатической сложности и проверка на соответствие стандартам кодирования, но также графические изображения потока управления, взаимосвязи данных и количество отдельных путей от одной строки кода к другой. Информация может использоваться вплоть до формальных методов, которые математически подтверждают свойства данной программы.

Инструменты помогают в выявлении следующих дефектов:

  • Неиспользуемые переменные;

  • Части кода, которые никогда не выполнятся;

  • Бесконечные циклы;

  • Переменная с неопределенным значением;

  • Неправильный синтаксис;

  • Несогласованные интерфейсы между модулями и компонентами, такие как неправильное использование объекта, метода или функции, включая неправильные параметры;

  • Уязвимости безопасности, такие как проблемы безопасности, связанные с переполнением буфера, возникающим из-за невозможности проверить длину буфера перед копированием в буфер;

  • Различные типы нарушения стандартов программирования, как нарушения, создающие риск фактического сбоя, так и нарушения, которые усложняют тестирование, анализ и поддерживаемость кода;

Методы статического анализа:

  • Анализ управления (Control Analysis): фокусируется на изучении элементов управления, используемых в структуре вызовов, анализе потока управления и анализе переходов состояний (calling structure, control flow analysis and state transition analysis). Структура вызова связана с моделью путем идентификации вызовов и их структуры. Вызывающая структура может быть процессом, подпрограммой, функцией или методом. Анализ потока управления проверяет последовательность передачи управления и может выявить неэффективные конструкции в модели. Создается граф модели (CFG - Control Flow Graph), в котором условные ветви и стыки модели представлены узлами. По итогам также можно рассчитать цикломатическую сложность программы. Для анализа потока управления могут быть использованы: Абстрактная интерпретация, Удовлетворение ограничений, Типизация данных;

  • Анализ данных (Data Analysis): обеспечивает правильную работу с объектами данных, такими как структуры данных и связанные списки. Кроме того, этот метод также обеспечивает правильное использование определенных данных. Анализ данных включает два метода, а именно: зависимость данных и анализ потока данных (data dependency and data flow analysis). Зависимость данных необходима для оценки точности синхронизации между несколькими процессорами. Анализ потока данных проверяет определение и контекст переменных. Виды анализа потока данных:

    • Reaching Definitions;

    • Available Expressions;

    • Constant Propagation;

    • Very Busy Expressions;

    • Live Variables;

    • Use-Definition & Definition-Use;

  • Анализ неисправностей / отказов (Fault/Failure Analysis): анализирует неисправности (некорректный компонент) и отказ (некорректное поведение компонента модели) в модели. Этот метод использует описание преобразования ввода-вывода для определения условий, являющихся причиной сбоя. Для определения отказов в определенных условиях проверяется проектная спецификация модели (model design specification);

  • Анализ интерфейса (Interface Analysis): проверяет взаимодействующие и распределенные модели для проверки кода (This software verifies and verifies interactive and distribution simulations to check the code). Существует два основных метода анализа интерфейса, и анализ пользовательского интерфейса исследует интерфейсы подмоделей и определяет точность структуры интерфейса. Анализ пользовательского интерфейса исследует модель пользовательского интерфейса и меры предосторожности, предпринимаемые для предотвращения ошибок во время взаимодействия пользователя с моделью. Этот метод также фокусируется на том, насколько точно интерфейс интегрирован в общую модель и симуляцию.

Анализ потока управления (Control Flow Analysis) и анализ потока данных (Data Flow Analysis) взаимозависимы: чтобы получить точные результаты для анализа потока данных, необходимо учитывать поток управления (поскольку порядок операций влияет на возможные значения данных в конкретном месте программы). Чтобы получить точные результаты для анализа потока управления, необходимо учитывать поток данных, поскольку поток динамического управления (решение, принимаемое во время выполнения) зависит от значений данных в конкретных местах программы. Однако эти два анализа преследуют разные цели.

Граф потока управления (Control Flow Graph)

Граф потока управления (CFG) - это графическое представление потока управления или вычислений во время выполнения программ или приложений. Графы потока управления в основном используются в статическом анализе, а также в приложениях-компиляторах, поскольку они могут точно представлять поток внутри программного модуля. Характеристики графа потока управления:

  • Граф потока управления процессно-ориентированный (process oriented);

  • Граф потока управления показывает все пути, которые можно пройти во время выполнения программы;

  • Граф потока управления - это ориентированный граф;

  • Рёбра в CFG изображают пути потока управления, а узлы в CFG изображают базовые блоки.

Полное описание возможных элементов графа.

Цикломатическая сложность (Cyclomatic Complexity)

Цикломатическая сложность - это метрика для измерения сложности кода, основанная на графе потока управления. Независимый путь определяется как путь, имеющий хотя бы одно ребро, которое ранее не проходило ни в одном другом пути.

Определение из книги Ли Копланда - “A Practitioner's Guide to Software Test Design”, Главы 10:

Цикломатическая сложность​ - это конечное минимальное количество независимых, нецикличных маршрутов (называемых основными маршрутами), которые могут образовывать все возможные линейные пути в программном модуле.

Цикломатическая сложность может быть рассчитана относительно функций, модулей, методов или классов в программе как вручную, так и с помощью автоматизированных инструментов.

Математически цикломатическая сложность структурированной программы определяется с помощью ориентированного графа, узлами которого являются блоки программы, соединенные ребрами, если управление может переходить с одного блока на другой. Тогда сложность определяется как

M = E − N + 2P,

где:

  • M = цикломатическая сложность,

  • E = количество ребер в графе,

  • N = количество узлов в графе,

  • P = количество компонент связности.

В другой формулировке используется граф, в котором каждая точка выхода соединена с точкой входа. В этом случае граф является сильносвязным, и цикломатическая сложность программы равна цикломатическому числу этого графа (также известному как первое число Бетти), которое определяется как

M = E − N + P.

Это определение может рассматриваться как вычисление числа линейно независимых циклов, которые существуют в графе, то есть тех циклов, которые не содержат в себе других циклов. Так как каждая точка выхода соединена с точкой входа, то существует по крайней мере один цикл для каждой точки выхода.

Для простой программы, или подпрограммы, или метода P всегда равно 1. Однако цикломатическая сложность может применяться к нескольким таким программам или подпрограммам (например, ко всем методам в классе), в таком случае P равно числу подпрограмм, о которых идет речь, так как каждая подпрограмма может быть представлена как независимая часть графа.

Может быть показано, что цикломатическая сложность любой структурированной программы с только одной точкой входа и одной точкой выхода эквивалентна числу точек ветвления (то есть, операторов if или условных циклов), содержащихся в этой программе, плюс один.

Цикломатическая сложность может быть распространена на программу с многочисленными точками выхода; в этом случае она равна

π − s + 2,

где:

  • π - число точек ветвления в программе,

  • s - число точек выхода.

Применение:

  • Ограничение сложности при разработке: одно из первоначально предложенных Маккейбом применений состоит в том, что необходимо ограничивать сложность программ во время их разработки. Он рекомендует, чтобы программистов обязывали вычислять сложность разрабатываемых ими модулей и разделять модули на более мелкие всякий раз, когда цикломатическая сложность этих модулей превысит 10. Эта практика была включена НИСТ-ом в методику структурного тестирования с замечанием, что со времени исходной публикации Маккейба выбор значения 10 получил весомые подтверждения, однако в некоторых случаях может быть целесообразно ослабить ограничение и разрешить модули со сложностью до 15. В данной методике признается, что иногда могут существовать причины для выхода за рамки согласованного лимита. Это сформулировано как рекомендация: «Для каждого модуля следует либо ограничивать цикломатическую сложность до согласованных пределов, либо предоставить письменное объяснение того, почему лимит был превышен»;

  • Применение при тестировании программного обеспечения: определение количества тестов, необходимых для полного покрытия кода. Цикломатическая сложность M имеет два свойства, для конкретного модуля:

    • M - оценка сверху для количества тестов, обеспечивающих покрытие условий (точек ветвления);

    • M - оценка снизу для количества маршрутов через граф потока управления и, таким образом, количества тестов для полного покрытия путей.

  • В составе других метрик: используется в качестве одного из параметров в индексе удобства сопровождения (англ. maintainability index).

Источники:

Доп. материал:

Last updated